
ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ

OptiMat D400 и OptiMat D630

Настоящее руководство по эксплуатации распространяется на автоматические выключатели типов: ОрtiMat D400 и OptiMat D630 общего назначения (далее — выключатели). Выключатели OptiMat D400 и OptiMat D630 с микропроцесорными максимальными расцепителями тока; выключатели OptiMat D630 с термомагнитными максимальными расцепителями тока и выключатели – разъединители OptiMat D400 и OptiMat D630.

В руководстве по эксплуатации приведены основные характеристики, описание устройства и работы изделия и указания по монтажу, эксплуатации, хранению и заказу выключателей OptiMat D.

1. НАЗНАЧЕНИЕ

1.1 Выключатели предназначены для поставок на внутренний рынок, экспорт, а также для поставок на АЗС, для применения в электрических целях переменного тока частоты 50 Гц, 80 Гц (50 Гц для выключателей с микропроцессорным расцепителем ОрtіМаt D) напряжением до 690 В с рабочими токами до 630 А, для защиты от перегрузок и коротких замыканий, нечастых оперативных включений (до 30 включений в сутки) и отключений линий. Выключатели соответствуют требованиям ТУ3422-062-05758109-2015, ТУ3422-062-05758109-2015Д, ТР ТС 004/2011, ТР ТС 020/2011 и стандартов ГОСТ IEC 60947-2, ГОСТ Р 50030.2 (М3К 60947-2). Климатические исполнения У и УХЛ, категория размещения 3 (для выключателей общепромышленного исполнения и с приемкой Российского Классификационного Общества» (РКО)) и климатическое исполнение ОМ категории размещения 4 (для выключателей с приемкой Российского морского регистра судоходства (РС)) по ГОСТ 15150.

Изделия, изготовленные под наблюдением РКО, должны соответствовать требованиям «Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов».

Изделия, изготовленные под техническим наблюдением PC, должны соответствовать требованиям следующих нормативных документов:

Части XI Правил классификации и постройки морских судов PC;

Части IV Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов PC.

Изделия, применяемые в составе железнодорожного подвижного состава, изготавливаются с учетом требований ТР TC 001/2011.

1.2 Структура условного обозначения выключателей

1.2.1 Выключатели с микропроцессорным расцепителем:

OptiMat DXXXX, $-MRX_2 - X_3X_4 - X_5$

OptiMat D — Условное обозначение серии выключателей.

XXX — Обозначение номинального тока выключателя:

400-400 A; 630-630 A.

 ${f X}_1$ — Условное обозначение исполнений по предельной отключающей способности:

N — 40 кA;

Н - 65 кА.

MRX₂ — Обозначение микропроцессорного расцепителя:

MR1, MR2 — с ЖК — экраном;

MR1.1, MR2.1 — без ЖК — экрана.

1 (1.1) — Обеспечивает защиту электрических цепей от перегрузок и коротких замыканий с фиксированными выдержками времени (для MR1.1 с регулируемой кратковременной выдержкой времени в зоне короткого замыкания), с предустановленной функцией тепловой памяти и индикацией настраиваемых параметров;

2 (2.1) — Обеспечивает защиту электрических цепей от перегрузок и коротких замыканий, в том числе от однофазных коротких замыканий с регулируемой выдержкой времени в зоне перегрузки и с регулируемой кратковременной выдержкой времени в зоне короткого замыкания с настраиваемой функцией тепловой памяти и индикацией настраиваемых параметров.

X₃X₄—Обозначение климатического исполнения и категории размещения по ГОСТ 15150: УЗ или ОМ4 (для выключателей с приемкой РС).

 ${f X}_{{f S}}-$ Обозначение приёмки: РЕГ — для выключателей с приёмкой РС и РКО; З — для поставок на экспорт; АЗС — для атомных электростанций; РЖД — исполнение для использования в составе железнодорожного подвижного состава; при отсутствии — приёмка ОТК.

1.2.2 Выключатели с термомагнитным регулируемым расцепителем:

OptiMat D630X,-ТМХ,Х,Х,-УХЛЗ-Х,

OptiMat D — Условное обозначение серии выключателя.

630 — Обозначение типа выключателя по максимальному току с расцепителями от 320 до 630 А.

Х, — Условное обозначение исполнений по предельной отключающей способности:

N - 40 kA;

F - 50 κA:

 $H - 65 \, \text{kA}$

ТМ — Обозначение термомагнитного регулируемого расцепителя (состоит из расцепителя токов перегрузки с регулируемыми уставками по току (далее расцепитель токов перегрузки) и расцепителя токов короткого замыкания с регулируемыми или фиксированными уставками по току (далее расцепитель токов короткого замыкания)).

X_xX_xX_x — Значение номинального тока расцепителей в соответствии с таблицей 2.

 $y\dot{x}\ddot{\eta}\ddot{3}$ — Обозначение климатического исполнения и категории размещения по ГОСТ 15150.

X_s — Обозначение приёмки: РЕГ — для выключателей с приёмкой РС и РКО; З — для поставок на экспорт; АЗС — для атомных электростанций; РЖД — исполнение для использования в составе железнодорожного подвижного состава; при отсутствии — приёмка ОТК.

1.2.3 Автоматические выключатели-разъединители класса X (СВІ-Х, согласно приложению L ГОСТ IEC 60947-2):

OptiMat DXXX-NA-УХЛЗ

OptiMat D — Условное обозначение серии выключателей.

XXX — Обозначение номинального тока выключателя:

400-400 A: 630-630 A

NA — обозначение классификации CBI — X.

УХЛЗ — Обозначение климатического исполнения и категории размещения по ГОСТ 15150.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Номинальные и предельные значения параметров главной цепи выключателей с микропроцессорными расцепителями приведены в таблице 1, выключателей с термомагнитными расцепителями приведены в таблице 2; СВІ — X приведены в таблице 3.

Таблица 1— Номинальные и предельные значения параметров главной цепи выключателей с микропроцессорными расцепителями

Наименов	OptiMa	t D400	OptiM	at D630								
Категор	Категория применения						В					
Пригодность к разъединению (по ГОСТ IEC 60947-1)					Д	a						
Номинальный ток		I, A		40	00	6	30					
Номинальная частота		Гц			5	0						
Номинальное напряжение изоляции		U, B			80	00						
Номинальное импульсное выдержив	аемое напряжение	U _{imo} , K	В			3						
Минимальное рабочее напряжение	·	U, B			2	4						
Номинальное рабочее напряжение		U_, B			69	30						
	Исполнение по отк	слючающей спо	собности									
	I _{cu} , ĸA	U 400 B		40								
Номинальная предельная наиболь- шая отключающая способность		I _{cu} , κΑ	U _e 400 B	Н		6	5					
			i _{cu} , KA	i _{cu} , NA	i _{cu} , KA	i _{cu} , KA	i _{cu} , NA	i _{cu} , KA	i _{cu} , NA	U_ 690 B	N	
	0,0901		Н	10								
Номинальная рабочая наибольшая отключающая способность	$\rm I_{cs}/I_{cu},\%$				10	00						
	Исполнение по вк	лючающей спо	собности									
			N		8	4						
Номинальная наибольшая включа-	T A	U _e 400 B	Н		14	13						
ющая способность	I _{cm} , κΑ	II 000 D	N		13	,6						
		U ₀ 690 B		17								
Номинальный кратковременно выдерживаемый ток	I _{cw}	0,5 с, кА		7,5								

Таблица 2— Номинальные и предельные значения параметров главной цепи выключателей с термомагнитными регулируемыми расцепителями.

Наименование параметра	OptiMat D630			
Категория применения	А			
Пригодность к разъединению (по ГОСТ IE	C 60947-1)			Да
Номинальный ток термомагнитного регулируемого расцепителя		I _n , A		320, 400, 500, 630
Номинальная частота		Гц		50, 60
Номинальное напряжение изоляции		U _i , B		800
Номинальное импульсное выдерживаемое напряжение		U _{imp} , KB	8	
Минимальное рабочее напряжение				24
Номинальное рабочее напряжение		U _e , B	690	
Исполнение по отключающ	ей способно	сти		
			N	40
		U _e 400 B	F	50
Номинальная предельная наибольшая отключающая			Н	65
способность	I _{cu} , κΑ		N	8
		U _e 690 B	F	10
			Н	10

Наименование параметра	OptiMat D630			
Номинальная рабочая наибольшая отключающая способность	100			
Исполнение по включаюц				
		U _e 400 B	N	84
			F	105
Номинальная наибольшая включающая способность	T		Н	143
поминальная наиоольшая включающая спосооность	I _{cm} , KA		N	13,6
		U _e 690 B	F	17
			Н	17

Таблица 3 — Номинальные и предельные значения параметров главной цепи выключателей –разъединителей CBI — X

Наименование параме		OptiMat D400 — NA	OptiMat D630 — NA		
Категория применени	19		,	4	
Пригодность к разъединению (по ГО	7–1)	Д	a		
Номинальный ток		I _n , A	400	630	
Номинальная частота		Гц	50,	60	
Номинальное напряжение изоляции		U _i , B	81	00	
Номинальное импульсное выдерживаемое напряж	сение	U _{imp} , κΒ	1	3	
Минимальное рабочее напряжение		U _e , B	24		
Номинальное рабочее напряжение		U _e , B	690		
Уставка номинального мгновенного тока короткого	замыкания	I _i , A	8800		
Номинальная предельная наибольшая	I _{cu} , κA	U _e 400 B	6	5	
отключающая способность	-cu' ···	U _e 690 B	1	0	
		U _e 400 B	6	5	
Номинальный условный ток короткого замыкания	I _{cc} , κA	U _e 690 B	1	0	
Номинальная наибольшая включающая	T4	U _e 400 B	14	13	
способность	I _{cm} , кА	U _e 690 B	1	7	
Номинальный кратковременно допустимый ток		I _{cw} , κΑ	11	,3	

Номинальный ток выключателей с термомагнитным регулируемым расцепителем равен номинальному току термомагнитного расцепителя.

Номинальные токи термомагнитных регулируемых расцепителей $(\mathrm{I}_{\mathrm{p}})$ при температуре 40 °C и уставки по току расцепителя токов короткого замыкания соответствуют приведенным значениям в таблице 4.

Таблица 4 — Номинальные токи термомагнитных регулируемых расцепителей (I_n) при температуре 40 °C и уставки по току расцепителя токов короткого замыкания

Тип выключателя	Номинальные токи максимальных расцепителей (I _n), А	Регулируемые уставки по току расцепителя токов короткого замыкания (I,), А
	320	
0-+:M-+ D070	400	F 10 T
OptiMat D630	500	5–10 I _n
	630	

- 2.2 Степень защиты согласно ГОСТ 14254 от воздействия окружающей среды и от соприкосновения с токоведущими частями:
- IP30 оболочка выключателя:
- IP00 выводы выключателя без клеммных крышек:
- IP40 выключатель с клеммными крышками, на выводе кабеля IP20.
- 2.3 Износостойкость выключателей приведена в таблице 5.

Таблица 5 — Износостойкость выключателей

		Изно	Износостойкость, циклы ВО			
Типы автоматических выключателей		-6	коммутационная			
SSIMILE INTOVION	Номинальный ток расцепителя, A общая кол 400 в 400 10000 5000 630 2500 5000 320, 400 10000 5000 500, 630 2500 2500	400 B	690 B			
Выключатели с микропроцессорным	400	10000	5000	2500		
расцепителем	630	10000	2500	1250		
Выключатели с термомагнитным	320, 400	10000	5000	2500		
расцепителем '	500, 630	10000	2500	1250		
ODT V	400	10000	5000	2500		
CBI — X	630	10000	2500	1250		

- 2.4 Выключатели изготавливаются с микропроцессорным максимальным расцепителем тока на базе микроконтроллера и термомагнитным регулируемым максимальным расцепителем тока для защиты от перегрузки и короткого замыкания. Также изготавливаются автоматические выключатели-разъединители со встроенным нерегулируемым мгновенным расцепителем короткого замыкания для собственной защиты (ОВІ X).
- 2.4.1 Микропроцессорные максимальные расцепители тока MR1-D400/630, MR1.1-D400/630, MR2-D400/630 и MR2.1-D400/630 (далее расцепители) устанавливаются в автоматических выключателях ОрыМаt D400 и ОрыМаt D630 и предназначены для обеспечения защиты электрических цепей переменного тока частоты 50 Гц от перегрузок и коротких замыканий в диапазоне рабочих температур от минус 40 °C до плюс 70 °C в соответствии с требованиями ГОСТ IEC 60947-2. Имеют регулировку уставок по току и уставок по времени в диапазоне рабочих токов в соответствии с таблицей 6.

Таблица 6 — Диапазоны рабочих токов микропроцессорных расцепителей

Расцепитель	Диапазон рабочих Значение тока включения токов, А индикации расцепителя, А				Допускаемое отклонение				
MR1/MR2 — D400 MR1.1/MR2.1 — D400	160-400	130*	+20%						
MR1/MR2 — D630 MR1.1/MR2.1 — D630	250-630	190*	+20%						
*Указано минимальное значение суммарного тока по 3-м фазам для включения индикации микропроцессорного расцепителя									

2.4.1.1 В состав расцепителя входят:

- датчики тока, установленные в каждом полюсе выключателя и предназначенные для преобразования тока в выходной сигнал, поступающий на вход модуля управления (далее MV);
- МУ, предназначенный для контроля тока электрической сети и формирования сигнала отключения выключателя при возникновении аварийного состояния (перегрузка, короткое замыкание). Питание МУ осуществляется от датчиков тока. Таким образом, расцепитель не требует отдельного питания и гарантирует правильную работу защиты в диапазоне рабочих токов;
- исполнительный расцепитель, предназначенный для механического воздействия и отключения автоматического выключателя по сигналу от расцепителя;
- элемент питания для расцепителя (ЭП). Имеет в своём составе батарею питания, предназначенную для регупирования настроек расцепителя автоматического выключателя, находящегося в ненагруженном и незапитанном состоянии (только для исполнений MR1 и MR2), и для обеспечения работы функции тепловой памяти. Если токи находятся в диапазоне рабочих токов, указанных в таблице 6, расцепитель запитан и не требуется функция тепловой памяти ЭП рекомендуется извлекать. ЭП не является перезаряжаемым, доступен для заказа на сайте (арт. 299396).

Расцепитель реализуют следующие функции защиты:

- защита от перегрузок с обратно-квадратичной времятоковой характеристикой $t_{\rm s}$ с регулируемой уставкой $I_{\rm s}$ по номинальному рабочему току, с фиксированной (для MR1, MR1.1) и регулируемой (для MR2, MR2.1) уставкой $t_{\rm s}$ по времени срабатывания в зоне перегрузки;
- защита от коротких замыканий с регулируемой уставкой $I_{\rm sd}$ по току срабатывания, с фиксированной (неселективная для MR1, MR1.1) и регулируемой (селективная для MR2, MR2.1) уставкой $t_{\rm sd}$ по времени срабатывания в зоне короткого замыкания;
- защита от замыкания на землю (только для MR2, MR2.1) с регулируемыми уставками ${\rm I_s}$ по току срабатывания (с положением Off) и ${\rm t_s}$ по времени срабатывания при однофазном коротком замыкании.

Уставки по току и времени срабатывания, определяющие защитные функции автоматического выключателя в условиях эксплуатации, задаются потребителем через органы управления расцепителя, расположенные на его лицевой панели.

Допускается проводить изменение уставок расцепителя в положении «включено» (контакты полюсов замкнуты, с приложенным напряжением на полюсах выключателя).

Лицевая панель расцепителей MR1-D400/630 и MR2-D400/630 показана на рисунке 1.

Рисунок 1 — Общий вид лицевой панели расцепителя (на примере MR2-D630)

1— обозначение расцепителя; 2 — индикаторы сигнализации состояния защищаемой цепи и работоспособности расцепителя (светодиоды); 3 — miniUSB-разъём, предназначенный для подключения внешнего источника постоянного тока для запитывания расцепителя и проведения тестирования срабатывания расцепителя защиты; 4 — экран для индикации настраиваемых параметров; 5 — клавиша ОК, предназначенная для переключения между режимами, пробуждения процессора из спящего режима и сохранения изменений при выходе из меню; 6 — кнопки вверх/вниз для выбора предыдущего/следующего параметра или функции (\mathbf{I}_x \mathbf{t}_x \mathbf{t}_y \mathbf{t}_y , \mathbf{t}_y , \mathbf{t}_x , \mathbf{t}_y ,

2.4.1.2 Сигнализация

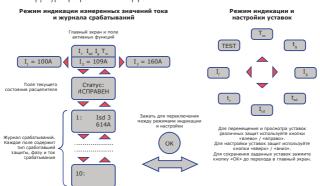
Зеленый светодиод (<1,05 I_p): горит, если ток нагрузки больше значения тока включения индикации (Та-блица 6) и меньше 1,05 I_p , и автоматический выключатель готов осуществлять защиту, мигает (с частотой 0,5 \perp 1,0 I_q), если ток больше 1,05 I_p , но меньше 1,3 I_p , и автоматический выключатель готов осуществлять защиту.

Желтый светодиод (>1,31_): мигает (частота мигания увеличивается с 1 до 3 Гц в зависимости от значения тока перегрузки), предупреждая о перегрузке, если ток нагрузки больше 1,31_к, и автоматический выключатель согласно времятоковой характеристике осуществит отключение защищаемой цепи.

Красный светодиод (Авария): горит постоянно, предупреждая об аварийном состоянии выключателя: обрыв цепи исполнительного электромагнита.

2.4.1.3 Индикация

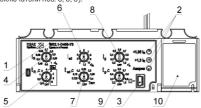
Индикация посредством программного интерфейса служит для отображения уставок $(\mathbf{I}_v, \mathbf{t}_s, \mathbf{I}_{sd}, \mathbf{t}_g, \mathbf{$


2.4.1.4 Тестирование

Проверка работоспособности расцепителя проводится на обесточенном автоматическом выключателе. Рукоятка должна находиться в верхнем положении, что соответствует состоянию выключателя «Включено» (контакты полюсов замкнуты). Ток не должен протекать через полюса выключателя во время тестирования! К miniUSB- разъёму (поз. 3, рисунок 1) необходимо подключить источник постоянного тока напряжением от 5 до 12 В, нагрузочной способностью не менее 1 А (рекомендуемая длина кабеля до 1,5 м). Для запуска тестирования необходимо в меню на вкладке «ТЕЅТ» клавишами «▼ », «▲ » выбрать значение «Оп» и выйти из меню, нажав и удерживая клавишу «ОК» в течение 3 с. Тест будет запущен. Этапы тестирования будут дублироваться на дисплее:

- 1. Тест датчиков тока. Расцепитель проверит на обрыв каждый датчик тока. Если датчики тока исправны, то начнется следующий этап теста. В случае отрицательного результата загорится индикатор «Авария», тест завершится с сообщением на дисплее «ОБРЫВ ДАТЧИКА», отображаемым в течение 3 с.
- Тест исполнительного расцепителя. Если исполнительный расцепитель исправен, то начнется следующий этап теста. В случае отрицательного результата загорится индикатор «Авария», тест завершится с сообщением на дисплее «ОБРЫВ ЭЛ-МАГН.», отображаемым в течение 3 с.

3. Тест срабатывания автоматического выключателя от исполнительного расцепителя. По результатам завершения теста автоматический выключатель должен перейти в состояние «Отключено», что является критерием успешности прохождения тестирования. Если этого не произошло — тест не пройден. Вне зависимости от успешности прохождения последнего этапа расцепитель перезагрузится. На рисунке 2 приведена структура программного интерфейса, дана расшифровка символов причин отключения автоматического выключателя.


Рисунок 2 — Структура программного интерфейса

Примечание — Поле текущего состояния содержит надпись состояния исполнительного расцепителя при нагруженном автоматическом выключателе или подключенном источнике постоянного тока 5–12 В к разъему 3 (рисунок 1). При неисправном состоянии будет отображена надпись "АВАРИЯ! ОБРЫВ ЭМ" (прим. ЭМ — электромагнита). Если через автоматический выключатель не протекает ток и не подключен источник постоянного тока 5–12 В, то поле будет содержать пустую надпись «.- ».

Журнал срабатывания содержит описание событий аварийного отключения для защит \mathbf{I}_{sd} \mathbf{I}_{g} . Пример первой записи в журнале, когда расцепитель защиты сработал по защите \mathbf{I}_{sd} по третьей фазе и ток в момент отключения был 614 А показан на рисунке 2.

2.4.1.5 Лицевая панель расцепителей MR1.1-D400/630 и MR2.1-D400/630 показана на рисунке 3. Рисунок 3 — Общий вид лицевой панели расцепителя тока в исполнении MR2.1-D400 (в расцепителе MR1.1 отсутствуют переключатели поз. 5, 8, 9).

1— обозначение расцепителя; 2— индикаторы сигнализации состояния защищаемой цепи и работоспособности расцепителя (светодиоды); 3— miniUSB-разъём, предназначенный для подключения внешнего

источника питания (5_24B) для запитывания расцепителя и проведения функции ТЕСТ; 4— переключатель уставки рабочего тока расцепителя $\mathbf{I}_{\rm R}$ в кратности к номинальному току выключателя $\mathbf{I}_{\rm G}$; 5— переключатель уставки по времени срабатывания $\mathbf{t}_{\rm R}$ при токе $\mathbf{6I}_{\rm R}$ (с положением Off для MR2.1) (недоступен для MR1.1); 6— переключатель уставки по току срабатывания в зоне короткого замыкания $\mathbf{I}_{\rm ul}$ в кратности к рабочему току $\mathbf{I}_{\rm ul}$ 7— переключатель уставки по времени срабатывания в зоне короткого замыкания $\mathbf{I}_{\rm ul}$ в кратности к номинальному току выключателя $\mathbf{I}_{\rm ul}$ (только для MR2.1); 9— переключатель уставки по времени срабатывания при однофазном коротком замыкании $\mathbf{I}_{\rm ul}$ в кратности к номинальному току выключателя $\mathbf{I}_{\rm ul}$ (только для MR2.1); 0— отоек для ЭП.

2.4.1.6 Тестирование расцепителей MR1.1-D400/630 и MR2.1-D400/630

Проверка работоспособности расцепителей проводится на обесточенном автоматическом выключателе в положении «включено» (контакты полюсов замкнуты). Ток не должен протекать через полюса выключателя во время тестирования!

Для запуска проверки работоспособности необходимо:

- установить переключатель 7 в позицию «Тест», при этом положение переключателей 4; 5; 6; 8; 9 может быть произвольное;

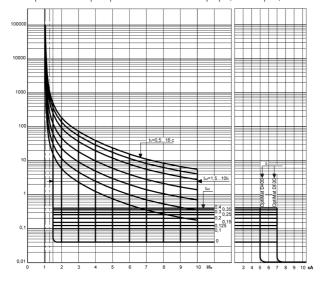
Тестирование поочередно включит светодиоды (поз. 2 рисунок 3) и подаст сигнал отключения на исполнительный расцепитель, после чего должно произойти отключение автоматического выключателя. В случае отрицательного результата загорится индикатор «Авария».

2.4.1.7 Технические характеристики расцепителей MR1-D400/630, MR1.1-D400/630, MR2-D400/630 и MR2.1-D400/630 приведены в таблице 7.

Таблица 7 — Значения уставок защит микропроцессорного расцепителя

	Значение параметра						
Наименование параметра	MR1.1	MR2.1	MR1	MR2	Допускаемое отклонение		
Уставка рабочего тока I _в расцепителя, А	0,4*; 0,45; 0,5; 0,56; 0,63; 0,7; 0,8; 0,9; 0,95; 1,0						± 5%
Уставки по времени срабатывания	0,5*; 1; 2; 4; 8; 12	0,5*; 1; 2; 4 — без функции «тепловая память; 2; 4; 8; 121; 16 — с функцией «тепловая память».					
при токе 6 I _R , с (t _R)	Off — защі	ита от перегруз	ки отключена (д	цля MR2.1)	-		
Уставки по току срабатывания в зоне короткого замыкания I и в кратности к рабочему току (I , / I , / I , /		1,5*; 2; 3; 4; 5; 6; 7; 8; 9; 10					
Уставки по времени срабатывания в зоне короткого замыкания, с (t _{sd})		; 0,2; 0,25; 0,3; ; 0,4.	-	0,1; 0,15; 0,2; 0,25; 0,3; 0,35; 0,4.	± 0,02 c		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Уставка по току мгновенного срабатывания I _, . А (не регулируемая)	5000 (OptiMat D400); 7000 (OptiMat D630);				± 20%		
Уставки тока срабатывания при однофазном коротком замыкании в кратности к номинальному току $(\mathbf{I}_p/\mathbf{I}_p)$	-	Off*; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0	-	Off*; 0,4; 0,6; 0,8; 1,0	± 10%		

Наимоналания параматра		Допускаемое			
Наименование параметра	MR1.1	MR2.1	MR1	MR2	отклонение
Уставки по времени срабатывания при однофазном коротком замыкании, с (\mathbf{t}_g)	-	Off (без пред- намеренной выдержки); 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0.	-	0* (без пред- намеренной выдержки); 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0.	± 0,02 c


^{*}Значения, установленные по-умолчанию (при поставке)

Примечания

- Требования, предъявляемые по времени срабатывания, действительны для выключателей, предварительно нагруженных током не менее 0,4 I в течение времени не менее 1 мин.
- При включении выключателя на имеющееся в цепи короткое замыкание время отключения выключателя увеличивается по сравнению с времятоковой характеристикой
- на 0,15 с (не более) при токах до 500 A;
 - на 0,05 с (не более) при токах от 500 до 1000 А;
- на 0,03 с (не более) при токах от 1000 до 3000 A;
- на 0,005 с (не более) при токах свыше 3000 А.

Времятоковые характеристики выключателя с микропроцессорным расцепителем (набор зашит в зависимости от типа расцепителя) приведены на рисунке 4.

Рисунок 4 — Времятоковые характеристики выключателя с микропроцессоным расцепителем

¹ Фиксированная уставка только для OptiMat D400 MR1/1.1 и OptiMat D630 MR1/1.1

Время срабатывания выключателей при нагрузке каждого полюса в отдельности при различных уставках t, приведено в таблице 8.

Таблица 8 — Время срабатывания выключателей с микропроцессорным расцепителем при нагрузке каждого полюса в отдельности при различных уставках t

			-	-	IV.				
Время при 6I _R , с	0,5	1	2	4	2	4	8	12*	16
Нагрузка		Без теплово	ой памяти, с	;		С теп	повой памя	ТЫО, С	
1,3I _R	16,9- 20,6	32,4- 41,9	70,7- 86,4	151-184	70,7- 86,4	151-184	354- 433	603- 909	1375- 1680
1,5I _R	11,3- 13,9	22,9- 28,0	46,8- 57,2	97,6- 119,4	46,8- 57,2	97,6- 119,4	215- 262	336- 475	556- 679
2I _R	5,4-6,6	10,9- 13,3	21,9- 26,8	44,8- 54,7	21,9- 26,8	44,8- 54,7	93-114	138- 189	204- 249
3I _R	2,1-2,5	4,1-5,1	8,3- 10,2	16,8- 20,5	8,3- 10,2	16,8- 20,5	34- 41,6	49,4- 66,5	70,1- 85,7
4I _R	1,1-1,3	2,1-2,6	4,3-5,3	8,7–10,7	4,3-5,3	8,7–10,7	17,6- 21,5	25,4- 34	35,7- 43,7
6I _R	0,45- 0,55	0,9-1,1	1,8-2,2	3,6-4,4	1,8-2,2	3,6-4,4	7,2-8,8	10,4- 13,9	14,4- 17,6
8I _R	0,24- 0,3	0,48- 0,59	0,98- 1,20	1,96- 2,40	0,98- 1,20	1,96- 2,40	4-4,8	5,7-7,5	7,9-9,7
10I _R	0,18- 0,22	0,27- 0,33	0,6-0,8	1,2-1,5	0,6-0,8	1,3-1,5	2,4-3,0	3,6-4,7	5,0-6,0
*только для MR1	и MR1.1								

Примечание — Для уставок по времени t, в зоне тепловой памяти значения времен срабатывания указаны для первого срабатывания расцепителя. При последующих активациях защит расцепителя в течение 20 мин допускается отклонение от указанных значений времен срабатывания из-за внесения программной корректировки функции тепловой памяти.

Значения номинального рабочего тока (І,) стационарных выключателей с микропроцессорным максимальным расцепителем и автоматических выключателей-разъединителей CBI — X для различных значений температуры окружающей среды приведены в таблице 9.

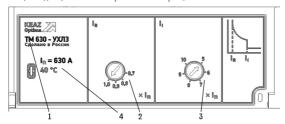
Таблица 9 — Уставки номинального рабочего тока для различной температуры окружающей среды стационарных выключателей

Номинальный рабочий ток ($\mathbf{I}_{_{\mathrm{e}}}$)			Ter	чпература,	°C		
	до 40	45	50	55	60	65	70
OptiMat D400, A	400	400	400	380	380	360	340
OptiMat D630, A	630	610	610	590	570	530	510

Значения номинального рабочего тока (І,) втычных/выдвижных выключателей с микропроцессорным максимальным расцепителем и автоматических выключателей-разъединителей CBI — X для различных значений температуры окружающей среды приведены в таблице 10.

Таблица 10 — Значения номинального рабочего тока (I_{ν}) втычных/выдвижных выключателей с микропроцессорным максимальным расцепителем и автоматических выключателей – разъединителей СВІ — Х

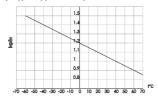
Номинальный рабочий ток (I_)		Температура, °С						
поминальный расочий ток (1 ,	до 40	45	50	55	60	65	70	
OptiMat D400, A	400	400	380	380	360	340	320	
OptiMat D630, A	570	550	530	510	510	490	470	


2.4.2 Выключатели с термомагнитными регулируемыми расцепителями имеют расцепитель токов перегрузки и расцепитель токов короткого замыкания для защиты в зоне токов перегрузки и короткого замыкания.

Уставки по току срабатывания, определяющие защитные функции автоматического выключателя в условиях эксплуатации, задаются потребителем через органы управления, расположенные на лицевой панели расцепителя.

Проводить изменение уставок расцепителя только в положении «отключено» (контакты полюсов разомкнуты).

Лицевая панель расцепителя показана на рисунке 5.


Рисунок 5 — Общий вид лицевой панели термомагнитных расцепителей тока.

1— обозначение расцепителя; 2 — регулятор уставки по току расцепителя токов перегрузки (I_p) ; 3 — регулятор уставки по току расцепителя токов короткого замыкания (I_p) ; 4 — значения номинального тока расцепителя и контрольной температуры.

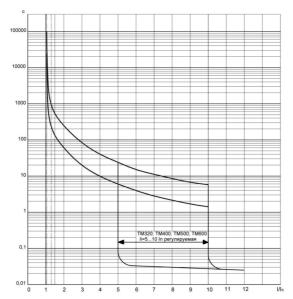
Зависимость номинальных рабочих токов выключателей с термомагнитными регулируемыми расцепителями от температуры окружающей среды приведена на рисунке 6.

Рисунок 6 — Зависимость номинальных рабочих токов выключателей с термомагнитными регулируемыми расцепителями от температуры окружающей среды

2.4.2.1 Расцепители токов перегрузки обеспечивают защиту от перегрузки с регулируемым значением уставки по току в диапазоне $I_{\rm g}=(0.7-1.0)\,I_{\rm g}$.

Расцепители токов перегрузки при контрольной температуре 40 °C при нагрузке всех полюсов имеют:

- условный ток нерасцепления 1,05 I,;
- условный ток расцепления $-1,3 I_n$;
- условное время 2 ч.


Расцепители токов перегрузки при нагрузке каждого отдельного полюса током 2 ${
m I}_{_{\rm I}}$ срабатывают за время от 30 до 600 с.

- 2.4.2.2 Расцепители токов короткого замыкания обеспечивают защиту от коротких замыканий с регулируемым значением уставки по току (I) в выключателях с I_n = (320–630) А в соответствии с таблицей 4. Расцепители тока короткого замыкания при нагрузке любых двух полюсов:
- а) при 0,8 токовой уставки не вызывают размыкание выключателя в течение 0,2 с;
- б) при 1,2 токовой уставки вызывают размыкание выключателя в течение 0,2 с.

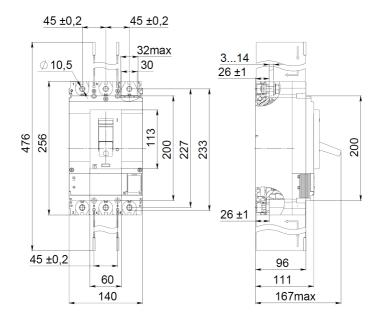
Расцепители тока короткого замыкания при нагрузке каждого полюса отдельно током 1,3 токовой уставки вызывают размыкание выключателя в течение 0,2 с.

2.4.2.3 Время-токовые характеристики выключателей при одновременной нагрузке всех полюсов приведены на рисунке 7.

Рисунок 7 — Времятоковые характеристики выключателей OptiMat D630-TM320; OptiMat D630-TM400; OptiMat D630-TM630 с регулируемой уставкой срабатывания расцепителей короткого замыкания

2.4.3 СВІ — Х предназначен для проведения и разъединения тока в цепи, но не обеспечивает защиту от сверхтоков.

Встроенные в выключатели OptiMat D-NA нерегулируемые расцепители токов короткого замыкания обеспечивает собственную защиту (только защиту выключателя). Значения уставок по току расцепителей токов короткого замыкания (I) указаны в таблице 3.


Расцепители тока короткого замыкания при нагрузке любых двух полюсов:

- а) при 0,8 І, токовой уставки не вызывают размыкание выключателя в течение 0,2 с;
- 6) при 1,2 І токовой уставки вызывают размыкание выключателя в течение 0,2 с.

Расцепители тока короткого замыкания при нагрузке каждого полюса отдельно током 1,3 I, токовой уставки вызывают размыкание выключателя в течение 0,2 с.

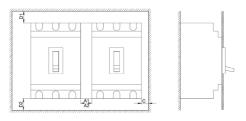

2.5 Габаритные, установочные и присоединительные размеры приведены на рисунке 8.

Рисунок 8 — Габаритные, установочные и присоединительные размеры выключателей

2.6 Минимально допустимые расстояния от выключателей до металлических частей приведены на рисунке 9, потери мощности на полюс выключателей приведены в таблице 11.

Рисунок 9 — Минимально допустимые расстояния от выключателей до металлических частей OptiMat D400, OptiMat D630

Автоматический выключатель		Размеры (мм)				
OptiMat D		С	D1	D2	A11)	A2 ²⁾
400 070 4	400 B	5	60	60	0	10
400-630 A 690 B		20	100	100	0	40
¹⁾ при наличии клеммных крышек:						

¹⁾ при наличии клеммных крыше 2) без клеммных крышек.

Таблица 11 — Потери мощности на полюс для стационарных и втычных/выдвижных выключателей

Тип	Тип		Потери мощности на полюс, Вт			
выключателя	расцепителя	Ном. ток, А	Стационарный	Втычной/Выдвижной		
OptiMat D630-TM320	TM	320	27,8	31,9		
OptiMat D630-TM400	IM	400	34,7	44,3		
OptiMat D400-MR400	MD	400	27,5	56,3		
OptiMat D630-MR630	MR	630	61,7	89,5		

^{2.7} Масса выключателя без дополнительных устройств не более 6,2 кг.

Выключатели имеют дополнительные устройства и аксессуары (детальный перечень представлен в таблице 15).

Дополнительные устройства заказываются отдельно и устанавливаются

потребителем самостоятельно в соответствии с инструкциями по монтажу.

- 2.8.1 Комплект для втычного присоединения.
- 2.8.1.1 Выключатели втычного исполнения обеспечивают взаимозаменяемость одного выключателя другим того же исполнения.

Выключатели, установленные на втычное основание, обеспечивают работу:

- с микропроцессорным максимальным расцепителем тока в соответствии с п. 2.4.1;
- с термомагнитным регулируемым расцепителем тока, значение номинального рабочего тока пересчитывается с учетом поправочного коэффициента из таблицы 12.

^{2.8} Дополнительные устройства.

Таблица 12 — Значение номинального рабочего тока для втычных/выдвижных выключателей с регулируемым термомагнитным расцепителем тока

Автоматический выключатель	Значение номинального рабочего тока $(\mathbf{I}_{_{\! \mathrm{e}}})$
OptiMat D630-TM320	0,95*I _n
OptiMat D630-TM400	0,9*I _n
OptiMat D630-TM500	0,95*I _n
OptiMat D630-TM630	0,95*I _n

Необходимо учитывать зависимость номинальных рабочих токов выключателей с термомагнитными регулируемыми расцепителями тока от температуры окружающей среды (рисунок в)

Комплект для втычного присоединения обеспечивает не менее 150 установок и извлечений выключателя из втычной панели.

При необходимости быстрой замены выключателя рекомендуется использовать дополнительный выключатель (втычной, без основания) с установленными на нём деталями из «Комплекта выводов» и «Комплекта механизма блокировки»

(см. «Инструкцию по монтажу комплекта для втычного присоединения и выдвижного исполнения выключателей OptiMat D630 ГЖИК.641353.068ИМ1»).

2.8.2 Комплект для выдвижного исполнения.

2.8.2.1 Выключатели выдвижного исполнения обеспечивают возможность их оперирования в положении «Разъединено», а также обеспечивают взаимозаменяемость одного выключателя другим того же исполнения. Выключатели, установленные в корзину выдвижного исполнения, обеспечивают работу:

с микропроцессорным максимальным расцепителем тока (в том числе и автоматические выключатели-разъединители СВІ-Х) или автоматические выключатели-разъединители в соответствии с п. 2.4.1;
 с термомагнитным регулируемым расцепителем тока, значение номинального рабочего тока пересчитывается с учетом поправочного коэффициента из таблицы 11.

Комплект для выдвижного исполнения обеспечивает не менее 150 перемещений выключателя из положения «Разъединено» в положение «Соединено» и из положения «Соединено» в положение «Разъединено». При необходимости быстрой замены выключателя рекомендуется использовать дополнительный выключатель (выдвижного, без корзины выдвижного исполнения) с установленными на нём деталями из «Комплекта выводов», «Комплекта механизма блокировки» и «Комплекта монтажных частей для выдвижного исполнения».

Входящие в комплект выдвижного исполнения контакты сигнализации предназначены для сигнализации положения выключателя в корзине.

Износостойкость контактов сигнализации не менее 10000 циклов включения-отключения.

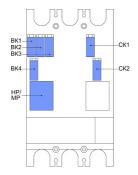
Номинальные рабочие токи контактов сигнализации (I₂) при различных напряжениях приведены в таблице 13. **Таблица 13** — Номинальные рабочие токи вспомогательных контактов (I) выдвижного исполнения

Номинальный рабочий ток (I _o), А					
при переменном напряжении питания,	При постоянном напряжении питания, В (категория применения DC-13)				
125–250 В (50 Гц) (категория применения АС-15)	30	50	75	125	220
5	5	1	0,75	0,5	0,25

Для обеспечения удобства эксплуатации рекомендуется вспомогательные цепи и цепи управления автоматических выключателей втычного и выдвижного исполнений подключать через розетку для вторичных цепей OptiMat/BA57-UMSTBVK-2.5/13 арт. 273633 и вилку для вторичных цепей OptiMat/BA57-MSTB-2.5/13 арт. 273632. Розетка и вилка в комплект поставки не входят.

- 2.8.3 Вилка и розетка для вторичных цепей
- 2.8.3.1 Вилка и розетка для вторичных цепей упрощают монтаж и обеспечивают безопасность обсуживающего персонала при эксплуатации вспомогательных цепей, цепей управления.
- 2.8.4 Независимый расцепитель.
- 2.8.4.1 Независимый расцепитель предназначен для дистанционного отключения выключателя при подаче напряжения 0.7-1.1 U $_{\rm c}$ в цепь управления. Применяется в цепях управления постоянного и переменного тока частотой 50 Гц и унифицирован для выключателей 0ptiMat 0 всех типов кроме 0ptiMat 01600.

Для предохранения катушки независимого расцепителя от длительного нахождения под током напряжение рекомендуется подавать через вспомогательный контакт в гнезде ВК1 (см. рисунок 10).


- 2.8.5 Минимальный расцепитель.
- 2.8.5.1 Минимальный расцепитель предназначен для отключения выключателя при падении напряжения в управляющей цепи до значений в диапазоне от 0,35 до 0,7 Uc. Применяется в цепях управления постоянного и переменного тока частоты 50 Гц и унифицирован для выключателей OptiMat D всех типов кроме OptiMat D1600.

Отключение автоматического выключателя независимым расцепителем и минимальным расцепителем увеличивает износ механизма отключения. Неоднократное отключение независимым и минимальным расцепителями сокращает общую износостойкость автоматического выключателя на 40%.

- 2.8.6 Вспомогательные контакты.
- 2.8.6.1 Вспомогательные контакты предназначены для сигнализации состояния выключателя. Вспомогательные контакты имеют единую конструкцию и устанавливаются в гнезда крышки. Схема гнезд, в которые устанавливаются вспомогательные контакты, а также независимый или минимальный расцепители приведена на рисунке 10.

Рисунок 10 — Схема расположения гнезд под вспомогательные контакты, независимый или минимальный расцепители

Функции, выполняемые вспомогательными контактами в зависимости от гнезда крышки, в которые они установлены:

ВК1, ВК2, ВК3, ВК4 — сигнализация о коммутационном положении главных контактов (замкнуты/разомкнуты);

- СК1 сигнализация об отключении выключателя с расцеплением механизма вследствие:
- срабатывания расцепителя максимального тока (аварийное отключение);
- срабатывания независимого или минимального расцепителей;
- нажатия кнопки тестирования;

СК2 — сигнализация об отключении выключателя вследствие срабатывания микропроцессорного максимального расцепителя или термомагнитного регулируемого расцепителя (только аварийное отключение).
2.8.6.2 Принципиальная электрическая схема выключателя с дополнительными устройствами представлена на рисунке 11.

На схеме приведено максимально возможное количество вспомогательных контактов и расцепителей напряжения. Схема приведена в коммутационном положении выключателя «отключено», аппарат «взведён» и «вкачен». Обозначения, принятые в схеме:

ТМ — термомагнитный регулируемый расцепитель тока;

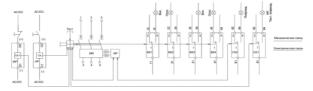
MR — микропроцессорный расцепитель тока;

MP — расцепитель минимального напряжения;

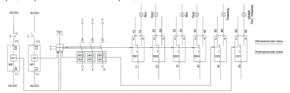
HP — независимый расцепитель;

ИР — исполнительный расцепитель;

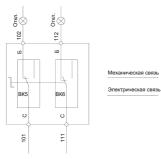
BK1, BK2, BK3, BK4 — контакты сигнализации коммутационного положения главных контактов выключателя (замкнуты/разомкнуты);

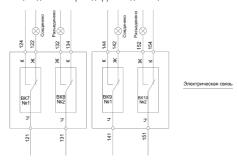

CK1 — контакт сигнализации расцепления механизма выключателя как при рабочих режимах, так и при аварийном отключении;

СК2— контакт сигнализации расцепления механизма выключателя (только аварийное отключение).


ВК7, ВК8, ВК9, ВК10 — сигнализация положения выключателя в корзине;

ВК5, ВК6 — контакты опережающего действия при включении (только с рукояткой поворотная выносная).


Рисунок 11 — Принципиальная электрическая схема выключателей с дополнительными устройствами


а) с микропроцессорными максимальными расцепителями

б) с термомагнитными регулируемыми расцепителями

в) контакты опережающего действия привода ручного дистанционного

- г) сигнализация положения выключателя в корзине выдвижного исполнения
- 2.8.7 Расширители полюсов позволяют осуществлять присоединение шинами шириной до 70 мм.
- 2.8.8 Комплекты зажимов.
- 2.8.8.1 Зажимы позволяют использовать кабели без кабельных наконечников. Доступно два вида зажимов:
- одногнездные зажимы для присоединения кабеля сечением до 300 мм²;
- двугнездные зажимы для присоединения двух кабелей сечением до 240 мм²;
- 2.8.9 Длинные и короткие клеммные крышки.
- 2.8.9.1 Клеммные крышки позволяют повысить безопасность использования аппаратов: обеспечивают защиту потребителей от прикосновения к токоведущим частям выключателей, позволяют выполнить пломбировку изделия, защищая его от несанкционированного подключения. В одном комплекте содержатся две клеммные крышки. Клеммные крышки для выключателя обеспечивают защиту IP40, для внешних проводников обеспечивают защиту IP40.

Короткие клеммные крышки используются только с выключателями с задним присоединением проводинков и выдвижного/втычного исполнения.

- 2.8.10 Привод ручной дистанционный.
- 2.8.10.1 Привод ручной дистанционный позволяет осуществлять управление выключателем, который установлен в глубине щита, с передней панели щита.

- 2.8.11 Привод двигательный предназначен для дистанционного управления автоматическим выключателем.
- 2.8.12 Устройство блокировки положения (отключено).
- 2.8.12.1 Устройство блокировки положения с помощью навесного замка позволяет блокировать ручку выключателя в коммутационном положении «отключено».
- 2.8.13 Комплект механической блокировки.
- 2.8.13.1 Механическая взаимная блокировка предназначена для взаимной блокировки операций включения/отключения двух автоматических выключателей.

Механическая блокировка используется только с выключателями, на которые установлены короткие клеммные крышки и комплекты для заднего присоединения.

- 2.8.14 Комплект для заднего присоединения.
- 2.8.14.1 Комплект для заднего присоединения обеспечивает возможность заднего присоединения внешних проводников. Используется с комплектом механической блокировки.
- 2.8.15 Разъём подвижный/неподвижный вторичных цепей.
- 2.8.15.1 Разъемы для вторичных цепей упрощают монтаж и обеспечивают безопасность обслуживающего персонала при эксплуатации вспомогательных цепей, цепей управления. Используются в выключателях с комплектом выдвижного исполнения и с комплектом для втычного исполнения.

Полный перечень технических характеристик дополнительных устройств приведен в техническом каталоге. Каталог доступен на сайте keaz.ru.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Во время установки и эксплуатации выключателей следует соблюдать все действующие профильные отраслевые нормы и правила по технике безопасности при эксплуатации электроустановок.
- Усилие оперирования на ручке управления соответствует ГОСТ 12.2.007.0 и составляет не более 15 даН. 3.2 Пожарная безопасность выключателей обеспечивается как в нормальном, так и в аварийном режимах работы.
- 3.3 Класс защиты выключателя по способу защиты человека от поражения электрическим током по ГОСТ 12.2.007.0-0.

4. МОНТАЖ ВЫКЛЮЧАТЕЛЯ

4.1 Монтаж выключателя должен проводиться согласно инструкции по монтажу выключателей автоматических ОрtiMat D400 и ОрtiMat D630 ГЖИК.641353.068ИМ. Перед монтажом выключателя необходимо убедиться, что технические данные выключателя соответствуют заказу и коммутационное положение выключателя «автоматически выключен» (нажать кнопку «тест», ручка в среднем положении, между знаками «1», «0»).

Рабочее положение выключателей в пространстве — вертикальное, знаком «I» (включено) — вверх, горизонтальное — плоскость монтажа выключателя параллельна земле. Выключатели допускается поворачивать в плоскости установки до 90° в любую сторону в стационарном, втычном и выдвижном исполнении.

При выполнении сборки, монтажа, технического обслуживания или выведения автоматического вы-

ключателя из эксплуатации следует отключить питание всех силовых и вспомогательных цепей, чтобы исключить любой потенциальный риск поражения электрическим током, электрической дугой.

5. ПОДГОТОВКА ВЫКЛЮЧАТЕЛЯ К РАБОТЕ

5.1 Для проверки работоспособности выключателя необходимо: визуально проверить целостность выключателя, проверить подключение токопроводящих проводников согласно инструкции по монтажу выключателей автоматических Ортыма D400 и OptiMat D630 ГЖИК.641353.068ИМ, проверить корректность выставленных уставок расцепителей, вручную включить выключатель, а затем произвести операцию ручного расцепления механизма путём нажатия на кнопку «Тест». Убедиться, что выключатель не имеет механических или электрических повреждений.

Внимание

Эксплуатация повреждённого аппарата не допускается. До этого момента подача напряжения запрешается!

Убедившись в том, что монтаж выполнен правильно, включите выключатель.

Для включения выключателя, находящегося в расцепленном положении, необходимо произвести операцию взвода, для чего нужно ручку перевести до упора в сторону знака «О», а затем включить выключатель, переведя ручку в сторону знака «I».

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1 Выключатели рассчитаны для работы без ремонта и смены каких-либо частей. При неисправности подлежат замене.
- 6.2 Периодически, не реже одного раза в год или после каждого отключения по короткому замыканию выключатель нужно осматривать и, при необходимости, проводить следующие операции обслуживания:
- удаление пыли, грязи или сажи сухой и чистой тряпкой;
- проверка поверхности выводов стационарного выключателя и контактов скольжения втычных/выдвижных выключателей (на подвижной и неподвижной частях) на предмет механических повреждений и удаление пыли, грязи или сажи сухой и чистой тряпкой, смазка при необходимости;
- без подачи напряжения на главные контакты выключателя, произвести 8-10 раз операции «включение-отключение», срабатывание выключателя путем нажатия на кнопку «Тест»;
- проверка момента затяжки крепления токоподводящих проводников.

7. УСЛОВИЯ ЭКСПЛУАТАЦИИ

- 7.1 Выключатели предназначены для эксплуатации в следующих условиях:
- 7.2 Высота над уровнем моря до 2000 м.
- 7.3 Температура окружающего воздуха для выключателей с регулируемым термомагнитным расцепителем от минус 60 °C до плюс 70 °C, для выключателей с микропроцессорным расцепителем от минус 40 °C до плюс 70 °C. Верхнее значение относительной влажности 98% при 25 °C.
- 7.4 Окружающая среда должна быть невзрывоопасной, не содержащей газы, жидкости и пыль в концен-

трациях, нарушающих работу выключателей.

- 7.5 Место установки выключателя должно быть защищено от попадания воды, масла, эмульсии.
- 7.6. Номинальные рабочие значения механических воздействующих факторов по ГОСТ 30631 для группы М4. Номинальные рабочие значения механических воздействующих факторов пля выключателей, уста-
- M4. Номинальные рабочие значения механических воздействующих факторов для выключателей, установленных в составе железнодорожного подвижного состава, по ГОСТ 30631 для группы M25.
- 7.7 Сейсмостойкость выключателей соответствует требованиям ДТ5,6 по ГОСТ 30546.1 (до 9 баллов по MSK-64 при уровнях установки до 70 м над нулевой отметкой).
- 7.8 По условиям внешней среды выключатели предназначены для эксплуатации в среде В. В части ЭМС выключатель соответствует требованиям ГОСТ IEC 60947-2 (Приложения F и J), для выключателей, установленных в составе железнодорожного подвижного состава ГОСТ 33436.3-2.

8. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

8.1 Условия хранения и транспортирования выключателей и допустимые сроки сохраняемости до ввода в эксплуатацию должны соответствовать указанным в таблице 14.

Транспортирование выключателей должно производиться крытым транспортом. При транспортировании выключателей в контейнерах допускается их перевозка открытым транспортом.

Транспортирование упакованных выключателей должно исключать возможность непосредственного воздействия на них атмосферных осадков и агрессивных сред.

Таблица 14 — Условия хранения и транспортирования выключателей и допустимые сроки сохраняемости до ввода в эксплуатацию

		повий транспор- сти воздействия	Обозначение	Допустимые сроки сохра- няемости в упаковке изготовителя, годы	
Виды поставок	механических факторов по ГОСТ 23216	климатиче- ских факторов по ГОСТ 15150	условий хранения по ГОСТ 15150		
1. Внутри страны (кроме районов Крайнего Севера и труднодоступных по ГОСТ 15846)	С	5 (ОЖ4)	2 (C)	2	
2. Внутри страны в районы Крайнего Севера и труднодоступные по ГОСТ 15846	ж	5 (ОЖ4)	2 (C)	2	
3. Экспортные в макроклиматические районы с умеренным климатом	С	5 (ОЖ4)	2 (C)	2	

9. СВЕДЕНИЯ О РЕАЛИЗАЦИИ

9.1 Выключатели не имеют ограничений по реализации.

1 iiit.

АО«КЗАЗ» Россия, 305044, г. Курск, ул. 2-я Рабочая, д. 23, помещение В1, помещение 2/1 www.keaz.ru

ПАСПОРТ ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ ТИПА OptiMat D400, OptiMat D630

Основные данные и характеристики (маркируются на выключателе)

Условное обозначение выключателя

Номинальное рабочее напряжение (U,) и частота для переменного тока

Номинальный ток (I_p) (номинальный ток выключателей с термомагнитным регулируемым расцепителем равен номинальному току термомагнитного расцепителя

Уставка по току расцепителей токов короткого замыкания (I)

Номинальные отключающие способности при коротком замыкании (\mathbf{I}_{co} , \mathbf{I}_{co})

Номинальное импульсное выдерживаемое напряжение (U,,,,,,)

Номинальное напряжение изоляции (U_i)

Обозначение климатического исполнения и категории размещения

Категория применения (селективности) (Кат. А или В)

Маркировка выводов

Маркировка пригодности к разъединению —

Дата изготовления

Серийный номер (S/n)

Единый знак обращения продукции на рынке государств — членов Таможенного союза

Товарный знак предприятия-изготовителя

Комплектность

В комплект поставки входят:

Выключатель	– 1 шт.
 Межполюсные перегородки 	– 4 шт.
 Руководство по эксплуатации 	– 1 шт.
 Инструкция по монтажу выключателей 	– 1 шт.

Комплект монтажных частей

Гарантийные обязательства

И-Иототовитель гарантирует соответствие характеристик выключателей техническим условиям при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.

Срок службы выключателей в пределах ресурсов по износостойкости и наибольшей отключающей способности, установленных в технических условиях ТУ3422-062-05758109-2015-10 лет.

Назначенный срок службы выключателей (изготовленных с учетом требований ТР ТС 001/2011) при экс-

плуатации на железнодорожном транспорте в пределах ресурсов по износостойкости и наибольшей отключающей способности, установленных в технических условиях ТУ3422—062-06758109—2015—10 лет. Гарантийный срок 5 лет со дня ввода выключателей в эксплуатацию, при числе циклов коммутационной и механической износостойкости, не превышающих указанных в технических условиях, но не более 6 лет с момента изготовления.

Примечание — Вследствие постоянной работы по усовершенствованию существующей конструкции может быть некоторое несоответствие между описанием и изделием. Дополнительную информацию можно найти на сайте www.keaz.gu.

Сведения об утилизации

Выключатель после окончания срока службы подлежит разборке и передаче организациям, которые перерабатывают черные и цветные металлы.

Опасных для здоровья людей и окружающей среды веществ и материалов в конструкции выключателя нет.

Содержание драгоценных металлов

Содержание серебра:

Выключатель автоматический OptiMat D400 — 24.639 г

Выключатель автоматический OptiMat D630 — 24,639 г

Вспомогательные контакты BK OptiMat D — 0,190 г

Таблица 14 — Перечень дополнительных устройств и аксессуаров

Аксессуары OptiMat D400, OptiMat D630	Общепромыш- ленное испол- нение, УХЛЗ	Исполнение с приемкой РКО, УХЛЗ-РЕГ	Исполнение с приемкой РС, ОМ4-РЕГ	Исполнение для РЖД, УХЛЗ-РЖД
Адаптер для основания OptiMat D400, D630-УХЛЗ	по запросу	по запросу	по запросу	по запросу
Комплект контактов вспомогатель- ных BK/CK1/CK2-OptiMat D-4шт.	143490	244078	255772	303537
Расцепитель минимального напря- жения OptiMat D100, D160, D250, D400, D630-230AC	254589	244086	255777	303549
Расцепитель независимый OptiMat D100, D160, D250, D400, D630-24DC/48AC	143498	по запросу	по запросу	303553
Расцепитель независимый OptiMat D100, D160, D250, D400, D630- 48DC/110AC	143495	244087	255779	303554
Расцепитель независимый OptiMat D100, D160, D250, D400, D630- 110DC/230AC	143496	244084	255778	303551
Расцепитель независимый OptiMat D100, D160, D250, D400, D630- 220DC/400AC	143497	244085	255780	303552
Комплект для заднего при- соединения OptiMat D400, D630 320-630А-длинный	238710	244094	255812	303535
Комплект для заднего при- соединения OptiMat D400, D630 320-630A-короткий	234090	244095	255813	303536

Аксессуары OptiMat D400, OptiMat D630	Общепромыш- ленное испол- нение, УХЛЗ	Исполнение с приемкой РКО, УХЛЗ-РЕГ	Исполнение с приемкой РС, ОМ4-РЕГ	Исполнение для РЖД, УХЛЗ-РЖД
Крышка клеммная OptiMat D400, D630-2шт.	251068	256941	по запросу	303537
Комплект для втычного присоедине- ния OptiMat D400, D630 320-630A	234091	по запросу	244097	303539
Комплект для выдвижного исполне- ния OptiMat D400, D630 320-630A	234093	по запросу	244099	303541
Вилка для вторичных цепей MSTB-2.5/13-OptiMat/BA57	273632	по запросу	по запросу	303532
Розетка для вторичных цепей UMSTBVK-2.5/13-OptiMat/BA57	273633	по запросу	по запросу	303558
Привод двигательный OptiMat D400, D630-230AC-Y3	233121	244100	255815	303546
Привод ручной дистанционный OptiMat D400, D630	240959	353213	244105	303548
Расширители полюсов OptiMat D400, D630-длинный-3 шт.	258210	353216	327489	303556
Расширители полюсов OptiMat D400, D630-короткий-3 шт.	252558	353217	327490	303557
Устройство блокировки положения (отключено) OptiMat D100, D160, D250, D400, D630	290397	по запросу	по запросу	303559
Комплект механической блокировки OptiMat D400, D630	310208	по запросу	по запросу	по запросу
Расцепитель минимального напря- жения OptiMat D100, D160, D250, D400, D630-110AC	254588	по запросу	по запросу	по запросу
Расцепитель минимального напря- жения OptiMat D100, D160, D250, D400, D630-110DC	254585	по запросу	по запросу	по запросу
Расцепитель минимального напря- жения OptiMat D100, D160, D250, D400, D630-220DC	254586	по запросу	по запросу	по запросу
Расцепитель минимального напряжения OptiMat D100, D160, D250, D400, D630-24DC	254583	по запросу	по запросу	по запросу
Расцепитель минимального напряжения OptiMat D100, D160, D250, D400, D630-400AC	254590	по запросу	по запросу	по запросу
Расцепитель минимального напряжения OptiMat D100, D160, D250, D400, D630-48AC	143494	по запросу	по запросу	по запросу
Расцепитель минимального напряжения OptiMat D100, D160, D250, D400, D630-48DC	254584	по запросу	по запросу	по запросу

Аксессуары OptiMat D400, OptiMat D630	Общепромыш- ленное испол- нение, УХЛЗ	Исполнение с приемкой РКО, УХЛЗ-РЕГ	Исполнение с приемкой РС, ОМ4-РЕГ	Исполнение для РЖД, УХЛЗ-РЖД
Устройство механической бло- кировки извлечения OptiMat D400, D630	253218	по запросу	по запросу	по запросу
Элемент питания для расцепите- лей MR OptiMat D	299396	по запросу	по запросу	по запросу
Привод двигательный OptiMat D400, D630-220DC-Y3	260102	по запросу	по запросу	по запросу
Расцепитель минимального напряжения OptiMat D100, D160, D250, D400, D630-24AC	254587	по запросу	по запросу	по запросу
Комплект зажимов для присое- динения 1 кабеля OptiMat D400, D630 320-630A-3 шт.	318011	по запросу	по запросу	по запросу
Комплект зажимов для присое- динения 2 кабелей OptiMat D400, D630 320-630A-3 шт.	318012	по запросу	по запросу	по запросу
Разъём подвижный вторичных це- пей OptiMat D100, D160, D250, D400, D630 (9 контактов)	327373	по запросу	по запросу	по запросу
Разъём неподвижный вторичных цепей OptiMat D100, D160, D250, D400, D630 (9 контактов)	327372	по запросу	по запросу	по запросу
Основание для 2 подвижных разъё- мов вторичных цепей OptiMat D100, D160, D250	327374	по запросу	по запросу	по запросу
Основание для 3 подвижных разъёмов вторичных цепей OptiMat D400, D630	327379	по запросу	по запросу	по запросу
Комплект механической блокиров- ки OptiMat D400, D630-УХЛЗ	по запросу	по запросу	по запросу	по запросу
Контакт вспомогательный BK/CK1/ CK2-OptiMat D-УХЛЗ	314967	353206	327487	375926
Привод ручной OptiMat D400, D630-УХЛЗ	364823	по запросу	по запросу	по запросу

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Автоматический выключатель OptiMat D соответствует TV3422-062-05758109-2015, дополнению ТУ3422-062-05758109-2015Д (для выключателей с приемкой РС, РКО) и признан годным к эксплуатации. Автоматический выключатель OptiMat D успешно прошёл приёмо-сдаточные испытания согласно требованиям стандарта ГОСТ IEC 60947-2-2021 и ТУ3422-062-05758109-2015 и ТУ3422-062-05758109-2015Д (для выключателей с приемкой РС, РКО). Выполнены следующие виды проверок и испытаний:

- Внешний осмотр;
- Испытания на механическое срабатывание;
- Проверка калибровки термомагнитного и микропроцессорного расцепителя;
- Контроль падения напряжения на зажимах главной цепи;
- Проверка электрической прочности изоляции;
- Контроль работы вспомогательных контактов;
- Контроль работы независимого расцепителя; Контроль работы минимального расцепителя;
- Контроль работы двигательного привода.

	серийного номера
Дата изготовления	
Технический контроль произвелен	

Место для маркировки

