11 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

- 11.1 Реле после окончания срока службы подлежит разборке и передаче организациям, которые перерабатывают черные и цветные металлы.
- 11.2 Опасных для здоровья людей и окружающей среды веществ и металлов в конструкции нет.
- 11.3 Порядок утилизации реле в соответствии с требованиями, устанавливаемыми законодательством РФ для утилизации электронного оборудования.

12 СВЕДЕНИЯ О РЕАЛИЗАЦИИ

Реле не имеют ограничений по реализации.

13 СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ

Страна-изготовитель: Чешская Республика.

Компания: ELKO EP, Ltd.

Телефон:+420 800 100 671

Изготовлено по заказу АО «КЭАЗ».

Приложение А Габаритные, установочные и присоединительные размеры реле OptiRel C RT

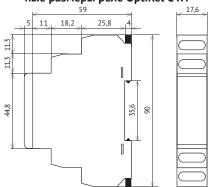


Рисунок А.1 – Габаритные, установочные и присоединительные размеры реле OptiRel C RT

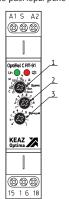


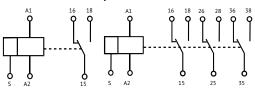
Рисунок А.2 – Вид со стороны лицевой панели реле OptiRel C RT-91

A1 S A2

(8) (8) (8)

35 3 6 38

888


OptiRel C RT-93

. In 🔵 🌘 🕏

Рисунок А.3 – Вид со стороны лицевой панели реле OptiRel C RT-93

1 – потенциометр грубой настройки времени; 2 – потенциометр точной настройки времени; 3 – потенциометр выбора функции; А1, А2 – клеммы подключения питания; S – управляющий вход; 15, 16, 18 – клеммы исполнительного реле; 25, 26, 28 – клеммы исполнительного реле; 35, 38, 38 – клеммы исполнительного реле

Приложение Б Принципиальная электрическая схема реле OptiRel C RT

A1,A2 – клеммы подключения питания; S – управляющий вход; 15,16, 18 – клеммы исполнительного реле; 25, 26, 28 – клеммы исполнительного реле; 35, 38, 38 – клеммы исполнительного реле

Рисунок Б.1 – Принципиальная электрическая схема реле OptiRel C RT-91

Рисунок Б.2 – Принципиальная электрическая схема реле OptiRel C RT-93

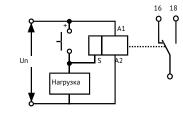
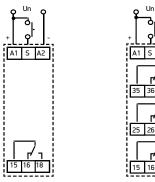



Рисунок Б.3 – Принципиальная электрическая схема подключения нагрузки между клеммами S и A2 реле OptiRel C RT-91

Приложение В Схема подключения реле OptiRel C RT

A1, A2 – клеммы подключения питания; S – управляющий вход; 15, 16, 18 – клеммы исполнительного реле; 25, 26, 28 – клеммы исполнительного реле: 35, 38, 38 – клеммы исполнительного реле

Рисунок В.1 – Схема подключения реле OptiRel C RT-91 Рисунок В.2 – Пример подключения реле OptiRel C RT-93

Приложение Г Диаграмма работа реле OptiRel C RT

Диаграммы работы реле и описание функций приведены в таблице Г.1.

Таблица Г.1 – Диаграмма работы реле OptiRel C RT

	· · · · · · · · · · · · · · · · · · ·	Fr Fr
Наимено- вание функции	Описание функции	Диаграмма работы
a	Задержка включения после подачи напряжения питания	U t t
b	Задержка выключения после подачи напряжения питания	U t t
C	Циклическая работа, начинающееся паузой после подачи напряжения питания	U tttttt
d	Циклическая работа, начинающееся импульсом после подачи напряжения питания	U t t t t t
e	Задержка выключения после размыкания управляющего контакта с моментальным замыканием вывода	S t t
f	Задержка выключения, реагирующая на замы- кание управляющего контакта и не зависящая от продолжительности замыкания	S t t
g	Задержка выключения после размыкания управляющего контакта с задержанным выводом	S t t
h	Задержка выключения после замыкания и размыкания управляющего контакта	S tttt
i	Импульсное реле	S I I I
j	Задержка импульса после подачи напряжения питания	U t 0.5c t 0.5c

Руководство по эксплуатации ГЖИК.648237.001РЭ

мультифункциональные реле времени серии OptiRel C RT

14 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Pene OptiRel C RT прошло приемосдаточные испытания на AO «КЭАЗ», соответствует требованиям ГОСТ IEC 61812-1, ГОСТ IEC 61010-1 и TP TC 004/2011 и признано годным к эксплуатации.

Дата изготовления указана на упаковке.

7 8 9

1 назначение

- 1.1 Настоящее руководство по эксплуатации предназначено для ознакомления с техническими данными, устройством, правилами эксплуатации, хранения и заказа мультифункционального реле времени OptiRel C RT.
- 1.2 Мультифункциональное реле времени OptiRel C RT предназначено для универсального использования при автоматизации и управлении.
- 1.3 Реле изготавливаются в соответствии с требованиями ГОСТ IEC 61812-1, ГОСТ IEC 61010-1 и ТР ТС 004/2011.
- 1.4 Реле устанавливается на 35 мм рейку (ГОСТ ІЕС 60715).
- 1.5 Габаритные, присоединительные и установочные размеры приведены в приложении А.
- 1.6 Принципиальная электрическая схема приведена в приложении Б.
- 1.7 Схема подключения приведена в приложении В.
- 1.8 Диаграммы работы приведены в приложении Г.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Технические характеристики приведены в таблице 1.

Таблица 1 – Технические характеристики реле

Максимальное сечение провода, одножи многожильного, мм ²	1x2,5 2x1,5	
Рабочее положение в пространстве	произволь- ное	
Режим работы	кругло- суточный	
Степень защиты по ГОСТ 14254:		
- со стороны лицевой панели;	IP40	
- со стороны клемм.	IP20	
Габаритные размеры, мм	90x17,6x64	
Вес, кг	OptiRel C RT-91	0,064
	OptiRel C RT-93	0,089

2.2 Категория применения и коммутируемая нагрузка приведены в таблице 2

Таблица 2 – Категория применения и максимальный коммутируемый ток

Категория		Коммутируемая нагрузка		
примене- ния	Область применения	OptiRel C RT-91	OptiRel C RT-93	
1	2	3	4	
	Переменный ток			
AC-1	Электроцепи сопротивления; неиндуктивная или мало-индуктивная нагрузка, соѕф≥0,95	250 B/16 A	250 B/8 A	
AC-2	Пуск и торможение противо- включением электродвигателей с фазным ротором	250 B/5 A	250 B/3 A	
AC-3	Прямой пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей	250 B/3 A	250 B/2 A	
AC-5a	Коммутирование разрядных ламп с некомпенсированной нагрузкой	230 B/3 A (690 BA)	230 B/1,5 A (345 BA)	
AC-5b	Коммутирование ламп накаливания	800 Вт	300 BT	
AC-7b	Двигательные нагрузки ¹⁾	250 B/3 A	250 B/1 A	
AC-12	Управление омическими и статичес- кими нагрузками, отключаемые с помощью фотоэлементов	250 B/ 10 A	250 B/ 1 A	
AC-13	Управление статическими нагрузками, отключаемые с помощью трансформаторами	250 B/6 A	-	
AC-14	Управление электромагнитами малой мощности (до 72 Вт)	250 B/6 A	250 B/3 A	
AC-15	Управление электромагнитами большой мощности (свыше 72 Вт)	250 B/6 A	250 B/3 A	
Постоянный ток				
DC-1	Электропечи сопротивления; неиндуктивная или малоиндуктивная нагрузка	24 B/16 A	24 B/8 A	
DC-3	Пуск электродвигателей с парал- лельным возбуждением, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением	24 B/6 A	24 B/3 A	
DC-5	Пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противовключением	24 B/4 A	24 B/2 A	
DC-12	Управление омическими и статическими нагрузками, отключаемые с помощью фотоэлементов	24 B/ 16 A	24 B/ 8 A	
DC-13	Управление электромагнитами	24 B/ 2 A	24 B/ 2 A	
DC-14	Управление электромагнитами, снабженными ограничительными резисторами	24 B/ 2 A	-	

³¹Категория АС-7D может быть использована для временного разгона, подталкивания или торможения в течении ограниченных периодов времени; во время таких ограниченных периодов число циклов срабатывания не должно превышать пяти за одну минуту и десяти за десять минут.

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Реле подключать согласно схемам, приведенных в приложении В.

- 3.2 Настройку временных диапазонов производить при помощи поворотных переключателей и потенциометров.
- 3.3 Установка временных диапазонов потенциометра грубой настройки приведены на рисунке 1.

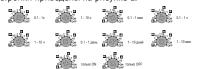


Рисунок 1 – Установка временных диапазонов потенциометра грубой настройки

3.4 Пример настройки времени на 8 часов:

На потенциометре для грубой настройки установить диапазон 1-10 с. На потенциометре для точной настройки времени установить 8 с, проверить правильность настройки (напр. секундомером). Потенциометр для грубой настройки установить на выбранный диапазон 1-10 часов, точную настройку времени не изменять.

- 3.5 Индикация состояния реле OptiRel C RT осуществляется который светодиодом, который светится непрерывно или мигает в зависимости от выбранной функции.
 - 3.6 Реле имеет десять функций:
- пять временных функций, управляемых напряжением питания:
- четыре временные функции, управляемые с входа S;
- одна функция импульсного запоминающего реле.
- Пример индикации и работы реле в приведен на рисунке 2.

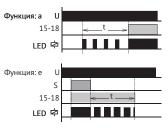


Рисунок 2 - Пример индикации и работы реле

3.8 Диаграммы работы и описание функций приведены в таблице Г.1

4 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 4.1 Монтаж, подключение и эксплуатация реле должны производиться в соответствии с документами: «Правила технической эксплуатации электроустановок потребителей», «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок», а также настоящим руководством по эксплуатации и осуществляться только квалифицированным электротехническим персоналом.
- 4.2 Монтаж и осмотр реле должен производиться при отсутствии напряжения.

5 ПОРЯДОК УСТАНОВКИ

- 5.1 Перед установкой реле необходимо проверить:
- отсутствие напряжения на устанавливаемом оборудовании;
- отсутствие рядом устройств-источников сильного электромагнитного излучения;
- обеспечение нормальной циркуляции воздуха, чтобы при длительной эксплуатации и повышении внешней температуры не была превышена допустимая рабочая температура реле:
- соответствие исполнения реле, предназначенному к установке;
- внешний вид, отсутствие повреждений.

- 5.2~ При установке используйте отвертку с крестообразным шлицем шириной не более 2~ мм или отвертку с плоским шлицем шириной не более 4~ мм.
- Реле устанавливаются на рейку 35 мм (ГОСТ IEC 60715).
- 5.3 Произвести подключение проводников согласно схеме (см. приложение В).
- 5.4 Внимание! При питании от сети переменного тока нейтраль должна быть подключена к клемме A2!
- 5.5 Внимание! Выходные контакты OptiRel C RT-93 не позволяют коммутировать разные фазы или напряжение > 250 В.
- 5.6 При установке OptiRel C RT-93 в металлические распределительные щиты, необходимо соблюдать безопасное расстояние (минимальное 3 мм) между верхними клеммами реле 35-36-38, 25-26-28 и крышкой распределительного
- 5.7 Допускается подключение нагрузки между клеммами ВКЛ/ОТКЛ и A2, кроме индикаторов тлеющего заряда и газоразрядных ламп.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1 При нормальных условиях эксплуатации необходимо проводить осмотр реле один раз в год.
- 6.2 При осмотре производится:
- удаление пыли и грязи:
- проверка затяжки винтов крепления внешних проводников;
- проверка надежности крепления реле к рейке;
- проверка работоспособности в составе аппаратуры при проверке ее на функционирование при рабочих режимах.
- 6.3 Реле в условиях эксплуатации неремонтопригодны.
- 6.4 При обнаружении неисправности реле подлежат замене.

7 УСЛОВИЯ ЭКСПЛУАТАЦИИ

- 7.1 Диапазон рабочих температур от минус 20 до плюс 55°C. 7.2 Высота монтажной площадки над уровнем моря не бо-
- 7.3 Относительная влажность окружающей среды от 5 до 85%.
- 7.3 Относительная влажность окружающей среды от 3 до 8.7.4 Рабочее положение в пространстве произвольное.
- 7.5 Механические воздействующие факторы по группе M3 ГОСТ 17516.1.

8 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 8.1 Транспортирование реле в части воздействия механических факторов осуществляется по группе С ГОСТ 23216, климатических факторов по группе 5 ГОСТ 15150.
- 8.2 Хранение реле в части воздействия климатических факторов осуществляется по группе 2 ГОСТ 15150. Хранение реле осуществляется в упаковке изготовителя в помещении с естественной вентиляцией при температуре окружающего воздуха от минус 30 до плюс 70°С и относительной влажности 60-70°С.
- 8.3 Допустимые сроки сохраняемости 5 лет.
- 8.4 Транспортирование упакованных реле должно исключать возможность непосредственного воздействия на них атмосферных осадков и агрессивных сред.

9 комплект поставки

- 9.1 Реле OptiRel C RT.
- 9.2 Руководство по эксплуатации, паспорт 1 шт.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 10.1 Изготовитель гарантирует соответствие характеристик реле при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
- 10.2 Гарантийный срок составляет 4 года со дня продажи потребителю, но не более 5 лет с момента изготовления. При условии соблюдения потребителем правил монтажа, эксплуатации. хоанения и тоанспоотирования, указанных в РЭ.
- 10.3 Гарантия не распространяется на изделия, выработавшие свой механический и/или электрический ресурс за время эксплуатации, а также на изделия, имеющие следы вскрытия и механических повреждений.